2015年中考数学模拟试卷一

1.(2012年黑龙江牡丹江)如图Z5­4,已知一个等腰三角形的腰长为5,底边长为8,将该三角形沿底边上的高剪成两个三角形,用这两个三角形能拼成几种平行四边形?请画出所拼的平行四边形,直接写出它们的对角线的长,并画出体现解法的辅助线.

2.(2013年江苏无锡)如图Z5­5,下面给出的正多边形的边长都是20 cm,请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明).

(1)将图Z5­5(1)中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等;

(2)将图Z5­5(2)中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等;

(3)将图Z5­5(3)中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等.

⊙热点二:方案设计

1.(2013年广西桂林)在“美丽广西,清洁乡村”活动中,李家村村长提出了两种购买垃圾桶方案;方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元;设方案1的购买费和每月垃圾处理费共为y1元,交费时间为x个月;方案2的购买费和每月垃圾处理费共为y2元,交费时间为x个月.

(1)直接写出y1,y2与x的函数关系式;

(2)如图Z5­6在同一平面直角坐标系内,画出函数y1,y2的图象;

(3)在垃圾桶使用寿命相同的情况下,哪种方案省钱?

图Z5­6

2.(2013年广西贺州)某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.

(1)篮球和足球的单价各是多少元?

(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?

⊙热点三:最值问题

1.(2012年四川泸州)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.

(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?

(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少(利润=售价-进价).

2.(2013年江苏南通)某公司营销A,B两种产品,根据市场调研,发现如下信息:

信息1:销售A种产品所获利润y(单位:万元)与销售产品x(单位:吨)之间存在二次函数关系y=ax2+bx.

当x=1时,y=1.4;当x=3时,y=3.6.

信息2:销售B种产品所获利润y(单位:万元)与销售产品x(单位:吨)之间存在正比例函数关系y=0.3x.

根据以上信息,解答下列问题;

(1)求二次函数解析式;

(2)该公司准备购进A,B两种产品共10吨,请设计一个营销方案,使销售A,B两种产品获得的利润之和最大,最大利润是多少?

方案与设计

热点一

1.解:能拼成3种平行四边形,如图86.

1 2 3

图86

图86(1)中,对角线的长为5;

图86(2)中,对角线的长为3和32+82=73;

图86(3)中,对角线的长为4和42+62=2 13.

2.解:(1)如图87(1),沿黑线剪开,把剪下的四个小正方形拼成一个正方形,再沿虚线折叠即可;

(2)如图87(2),沿黑线剪开,把剪下的三部分拼成一个正三角形,再沿虚线折叠即可;

(3)如图87(3),沿黑线剪开,把剪下的五部分拼成一个正五边形,再沿虚线折叠即可.

1  2  3

图87

热点二

1.解:(1)由题意,得y1=250x+3000,y2=500x+1000.

(2)如图88.

图88

(3)由图象可知:①当使用时间大于8个月时,直线y1落在直线y2的下方,y1

②当使用时间小于8个月时,直线y2落在直线y1的下方,y2

③当使用时间等于8个月时,y1=y2,即方案1与方案2一样.

2.解:(1)设足球单价为x元,则篮球单价为(x+40)元,由题意,得1500x+40=900x,解得x=60,

经检验:x=60是原分式方程的解.则x+40=100.

答:篮球和足球的单价分别是100元、60元.

(2)设恰好用完1000元,可购买篮球m个和购买足球n个,由题意,得100m+60n=1000.

整理,得m=10-35n.

∵m,n都是整数,∴当n=5时,m=7;当n=10时,m=4;当n=15,m=1.

∴有三种方案:

①购买篮球7个,足球5个;

②购买篮球4个,足球10个;

③购买篮球1个,足球15个.

热点三

1.解:(1)设购进甲种商品x件,购进乙种商品y件,

根据题意,得x+y=100,15x+35y=2700.解得x=40,y=60.

答:商店购进甲种商品40件,购进乙种商品60件.

(2)设商店购进甲种商品a件,则购进乙种商品(100-a)件,根据题意,得

15a+35100-a≤3100,5a+10100-a≥890.

解得20≤a≤22.

∵总利润W=5a+10(100-a)=-5a+1000,

W是关于x的一次函数,W随x的增大而减小,

∴当x=20时,W有最大值,此时W=900,且100-20=80.

答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.

2.解:(1)∵当x=1时,y=1.4;当x=3时,y=3.6,

∴a+b=1.4,9a+3b=3.6.解得a=-0.1,b=1.5.

∴二次函数解析式为y=-0.1x2+1.5x.

(2)设购进A产品m吨,购进B产品(10-m)吨,销售A,B两种产品获得的利润之和为W元,

则W=-0.1m2+1.5m+0.3(10-m)

=-0.1m2+1.2m+3=-0.1(m-6)2+6.6,

∵-0.1<0,∴当m=6时,W有最大值6.6.

∴购进A产品6吨,购进B产品4吨,销售A,B两种产品获得的利润之和最大,最大利润是6.6万元.

热门关注:2015年中考数学模拟试卷一
责任编辑:www.555edu.net

相关推荐

查看更多

学校热点

校园动态招生计划五年专中考资讯

学员关注

分数线学校答疑常见问题

初中起点四年制应用型大专招生学校

私人定制初中毕业升大学方案
×

添加老师微信咨询,添加时请备注姓名、年龄。

复制微信号:18960750936
×

添加老师免费咨询,添加时请备注姓名、年龄。

复制微信号:fjgkw123