同余式和不定方程是数论中古老而富有魅力的内容.考虑数学竞赛的需要,下面介绍有关的基本内容.
1.同余式及其应用
定义:设a、b、m为整数(m>0),若a和b被m除得的余数相同,则称a和b对模m同余.记为a=b(modm)或a=b(m)一切整数n可以按照某个自然数m作为除数的余数进行分类,即n=pm+r(r=0,1,…,m-1),恰好m个数类.于是同余的概念可理解为,若对n1、n2,有n1=q1m+r,n2=q2m+r,那么n1、n2
对模m的同余,即它们用m除所得的余数相等.
利用整数的剩余类表示,可以证明同余式的下述简单性质:
2.不定方程
不定方程的问题主要有两大类:判断不定方程有无整数解或解的个数;如果不定方程有整数解,采取正确的方法,求出全部整数解.
(1)不定方程解的判定
如果方程的两端对同一个模m(常数)不同余,显然,这个方程必无整数解.而方程如有解则解必为奇数、偶数两种,因而可以在奇偶性分析的基础上应用同余概念判定方程有无整数解.